A family of the Poisson brackets compatible with the Sklyanin bracket

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2007 J. Phys. A: Math. Theor. 404803
(http://iopscience.iop.org/1751-8121/40/18/008)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.109
The article was downloaded on 03/06/2010 at 05:09

Please note that terms and conditions apply.

A family of the Poisson brackets compatible with the Sklyanin bracket

A V Tsiganov
St Petersburg State University, St Petersburg, Russia
E-mail: tsiganov@mph.phys.spbu.ru

Received 12 December 2006, in final form 23 March 2007
Published 17 April 2007
Online at stacks.iop.org/JPhysA/40/4803

Abstract

We introduce a family of compatible Poisson brackets on the space of 2×2 polynomial matrices, which contains the Sklyanin bracket, and use it to derive a multi-Hamiltonian structure for a set of integrable systems that includes the XXX Heisenberg magnet, the open and periodic Toda lattices, the discrete self-trapping model and the Goryachev-Chaplygin gyrostat.

PACS numbers: 02.20.Sv, 02.40.Sf, 02.30.Xx
Mathematics Subject Classification: 37K10, 81R50

1. Introduction

The ingenious discovery by Magri [6, 7] that integrable Hamiltonian systems usually prove to be bi-Hamiltonian, and vice versa, leads us to the following fundamental problem: given a dynamical system which is Hamiltonian with respect to a Poisson bracket $\{., \text {. }\}_{0}$, how to find another Poisson bracket $\{., .\}_{1}$ compatible with the initial bracket and such that our system is Hamiltonian with respect to both brackets. This, along with the related problem of classification of compatible Poisson structures, is nowadays a subject of intense research, see e.g. $[2,6,7,14]$ and references therein.

In this paper, we study a class of finite-dimensional Liouville integrable systems described by the representations of the quadratic r-matrix Poisson algebra, or the Sklyanin algebra:

$$
\begin{equation*}
\{\stackrel{1}{T}(\lambda), \stackrel{2}{T}(\mu)\}=[r(\lambda-\mu), \stackrel{1}{T}(\lambda) \stackrel{2}{T}(\mu)] \tag{1.1}
\end{equation*}
$$

Here $\stackrel{1}{T}(\lambda)=T(\lambda) \otimes \mathrm{I}, \stackrel{2}{T}(\mu)=\mathrm{I} \otimes T(\mu)$ and $r(\lambda-\mu)$ is a classical r-matrix [8-11].
The main result of the present paper is a family of the Poisson brackets $\{., .\}_{k}$, which is compatible with the Sklyanin bracket (1.1), in the simplest case of the 4×4 rational r-matrix

$$
r(\lambda-\mu)=\frac{\eta}{\lambda-\mu} \Pi, \quad \Pi=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{1.2}\\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad \eta \in \mathbb{C}
$$

and 2×2 matrix $T(\lambda)$, which depends polynomially on the parameter λ

$$
\begin{align*}
T(\lambda) & =\left(\begin{array}{ll}
A(\lambda) & B(\lambda) \\
C(\lambda) & D(\lambda)
\end{array}\right) \\
& =\left(\begin{array}{ll}
\alpha \lambda^{n}+A_{1} \lambda^{n-1}+\cdots+A_{n} & \beta \lambda^{n}+B_{1} \lambda^{n-1}+\cdots+B_{n} \\
\gamma \lambda^{n}+C_{1} \lambda^{n-1}+\cdots+C_{n} & \delta \lambda^{n}+D_{1} \lambda^{n-1}+\cdots+D_{n}
\end{array}\right) . \tag{1.3}
\end{align*}
$$

The leading coefficients $\alpha, \beta, \gamma, \delta$ and $2 n$ coefficients of the det $T(\lambda)$,

$$
\begin{equation*}
d(\lambda)=\operatorname{det} T(\lambda)=(\alpha \delta-\beta \gamma) \lambda^{2 n}+Q_{1} \lambda^{2 n-1}+\cdots+Q_{2 n}, \tag{1.4}
\end{equation*}
$$

are Casimirs of the bracket (1.1). Therefore, we have a $4 n$-dimensional space of the coefficients A_{i}, B_{i}, C_{i} and D_{i} with $2 n$ Casimir operators Q_{i}, leaving us with n degrees of freedom.

For so-called open lattices independent Poisson involutive integrals of motion $H_{i}^{o}=$ $A_{i}, i=1, \ldots, n$ are given by the coefficients of the entry $A(\lambda)$:

$$
\begin{equation*}
A(\lambda)=\alpha \lambda^{n}+H_{1}^{o} \lambda^{n-1}+\cdots H_{n}^{o}, \quad\left\{H_{i}^{o}, H_{j}^{o}\right\}=0 \tag{1.5}
\end{equation*}
$$

In generic case, integrals of motion are given by the coefficients of the $\operatorname{tr} T(\lambda)$:

$$
\begin{equation*}
\operatorname{tr} T(\lambda)=(\alpha+\delta) \lambda^{n}+H_{1} \lambda^{n-1}+\cdots H_{n}, \quad\left\{H_{i}, H_{j}\right\}=0 \tag{1.6}
\end{equation*}
$$

These integrals of motion define two Liouville integrable systems, which are our generic models for the whole paper. Bi-Hamiltonian description of these models gives rise to the bi-Hamiltonian description of the Goryachev-Chaplygin gyrostat [8], open and periodic Toda lattice [9], inhomogeneous Heisenberg magnet [11] and the discrete self-trapping (DST) model [5].

2. The compatible bracket

In this section, we describe the Poisson bracket compatible with the Sklyanin bracket. The Poisson brackets $\{., .\}_{0}$ and $\{., .\}_{1}$ are compatible if every linear combination of them is still a Poisson bracket. The corresponding compatible Poisson tensors P_{0} and P_{1} satisfy the following equations

$$
\begin{equation*}
\llbracket P_{0}, P_{0} \rrbracket=\llbracket P_{0}, P_{1} \rrbracket=\llbracket P_{1}, P_{1} \rrbracket=0, \tag{2.1}
\end{equation*}
$$

where $\llbracket .$, . $]$ is the Schouten bracket [2, 6, 7]. Remind that on a smooth finite-dimensional manifold \mathscr{M} the Schouten bracket of two bivectors X and Y is an antisymmetric contravariant tensor of rank three and its components in local coordinates z_{m} read

$$
\llbracket X, Y \rrbracket^{i j k}=-\sum_{m=1}^{\operatorname{dim} \mathscr{M}}\left(X^{m k} \frac{\partial Y^{i j}}{\partial z_{m}}+Y^{m k} \frac{\partial X^{i j}}{\partial z_{m}}+\operatorname{cycle}(i, j, k)\right) .
$$

2.1. Open lattices

The Sklyanin bracket (1.1) amounts to having the following Poisson brackets between the entries $A(\lambda), B(\lambda), C(\lambda)$ and $D(\lambda)$ of the matrix $T(\lambda)$:

$$
\begin{align*}
& \{A(\lambda), A(\mu)\}_{0}=\{B(\lambda), B(\mu)\}_{0}=\{C(\lambda), C(\mu)\}_{0}=\{D(\lambda), D(\mu)\}_{0}=0, \\
& \{B(\lambda), A(\mu)\}_{0}=\frac{\eta}{\lambda-\mu}(B(\lambda) A(\mu)-B(\mu) A(\lambda)), \\
& \{C(\lambda), A(\mu)\}_{0}=\frac{-\eta}{\lambda-\mu}(C(\lambda) A(\mu)-C(\mu) A(\lambda)), \\
& \{B(\lambda), C(\mu)\}_{0}=\frac{\eta}{\lambda-\mu}(D(\lambda) A(\mu)-D(\mu) A(\lambda)) . \tag{2.2}\\
& \{B(\lambda), D(\mu)\}_{0}=\frac{-\eta}{\lambda-\mu}(B(\lambda) D(\mu)-B(\mu) D(\lambda)), \\
& \{C(\lambda), D(\mu)\}_{0}=\frac{\eta}{\lambda-\mu}(C(\lambda) D(\mu)-C(\mu) D(\lambda)), \\
& \{A(\lambda), D(\mu)\}_{0}=\frac{\eta}{\lambda-\mu}(C(\lambda) B(\mu)-C(\mu) B(\lambda)) .
\end{align*}
$$

In (1.1) matrix $r(\lambda-\mu)$ satisfies the Yang-Baxter equation, which ensures the Jacobi identity for the brackets (2.2).

Proposition 1. The Sklyanin bracket (1.1), (2.2) is compatible with the following bracket $\{.,\}_{1}$:
$\{A(\lambda), A(\mu)\}_{1}=\{B(\lambda), B(\mu)\}_{1}=\{C(\lambda), C(\mu)\}_{1}=0$,
$\{B(\lambda), A(\mu)\}_{1}=\frac{\eta}{\lambda-\mu}(\lambda B(\lambda) A(\mu)-\mu B(\mu) A(\lambda))-\frac{\eta \beta}{\alpha} A(\lambda) A(\mu)$,
$\{C(\lambda), A(\mu)\}_{1}=\frac{-\eta}{\lambda-\mu}(\lambda C(\lambda) A(\mu)-\mu C(\mu) A(\lambda))+\frac{\eta \gamma}{\alpha} A(\lambda) A(\mu)$,
$\{B(\lambda), C(\mu)\}_{1}=\frac{\eta}{\lambda-\mu}(\lambda D(\lambda) A(\mu)-\mu D(\mu) A(\lambda))-\frac{\eta \delta}{\alpha} A(\lambda) A(\mu)$,
$\{B(\lambda), D(\mu)\}_{1}=\frac{-\eta \lambda}{\lambda-\mu}(B(\lambda) D(\mu)-B(\mu) D(\lambda))+\eta A(\lambda)\left(\frac{\beta}{\alpha} D(\mu)-\frac{\delta}{\alpha} B(\mu)\right)$,
$\{C(\lambda), D(\mu)\}_{1}=\frac{\eta \lambda}{\lambda-\mu}(C(\lambda) D(\mu)-C(\mu) D(\lambda))-\eta A(\lambda)\left(\frac{\gamma}{\alpha} D(\mu)-\frac{\delta}{\alpha} C(\mu)\right)$,
$\{A(\lambda), D(\mu)\}_{1}=\frac{\eta \lambda}{\lambda-\mu}(C(\lambda) B(\mu)-C(\mu) B(\lambda))-\eta A(\lambda)\left(\frac{\gamma}{\alpha} B(\mu)-\frac{\beta}{\alpha} C(\mu)\right)$,
and

$$
\begin{align*}
\{D(\lambda), D(\mu)\}_{1} & =\frac{\eta \gamma}{\alpha}(D(\lambda) B(\mu)-D(\mu) B(\lambda))-\frac{\eta \beta}{\alpha}(D(\lambda) C(\mu)-D(\mu) C(\lambda)) \\
& +\frac{\eta \delta}{\alpha}(B(\lambda) C(\mu)-B(\mu) C(\lambda)) . \tag{2.4}
\end{align*}
$$

Proof. It is sufficient to check the statement on an open dense subset of the Sklyanin algebra defined by the assumption that $A(\lambda)$ and $B(\lambda)$ are co-prime and all roots of $A(\lambda)$ are distinct.

This assumption allows us to construct a separation representation for the Sklyanin algebra (1.1). In this special representation one has n pairs of Darboux variables, $\lambda_{i}, \mu_{i}, i=$ $1, \ldots, n$, having the standard Poisson brackets,

$$
\begin{equation*}
\left\{\lambda_{i}, \lambda_{j}\right\}_{0}=\left\{\mu_{i}, \mu_{j}\right\}_{0}=0, \quad\left\{\lambda_{i}, \mu_{j}\right\}_{0}=\delta_{i j} \tag{2.5}
\end{equation*}
$$

with the λ-variables being n zeros of the polynomial $A(\lambda)$ and the μ-variables being values of the polynomial $B(\lambda)$ at those zeros,

$$
\begin{equation*}
A\left(\lambda_{i}\right)=0, \quad \mu_{i}=\eta^{-1} \ln B\left(\lambda_{i}\right), \quad i=1, \ldots, n \tag{2.6}
\end{equation*}
$$

The interpolation data (2.6) plus n identities

$$
B\left(\lambda_{i}\right) C\left(\lambda_{i}\right)=-d\left(\lambda_{i}\right)
$$

allow us to construct the needed separation representation for the whole algebra:

$$
\begin{align*}
& A(\lambda)=\alpha\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \cdots\left(\lambda-\lambda_{n}\right), \\
& B(\lambda)=A(\lambda)\left(\frac{\beta}{\alpha}+\sum_{i=1}^{n} \frac{\mathrm{e}^{\eta \mu_{i}}}{\left(\lambda-\lambda_{i}\right) A^{\prime}\left(\lambda_{i}\right)}\right), \\
& C(\lambda)=A(\lambda)\left(\frac{\gamma}{\alpha}-\sum_{i=1}^{n} \frac{d\left(\lambda_{i}\right) \mathrm{e}^{-\eta \mu_{i}}}{\left(\lambda-\lambda_{i}\right) A^{\prime}\left(\lambda_{i}\right)}\right), \tag{2.7}\\
& D(\lambda)=\frac{d(\lambda)+B(\lambda) C(\lambda)}{A(\lambda)} .
\end{align*}
$$

The coefficients of the determinant $d(\lambda)(1.4)$ are Casimir elements for the both brackets $\{., .\}_{0}$ and $\{., .\}_{1}$ and, therefore, we can easily calculate the bracket $\{., .\}_{1}(2.3)-(2.4)$ in $(\lambda, \mu)-$ variables

$$
\begin{equation*}
\left\{\lambda_{i}, \lambda_{j}\right\}_{1}=\left\{\mu_{i}, \mu_{j}\right\}_{1}=0, \quad\left\{\lambda_{i}, \mu_{j}\right\}_{1}=\lambda_{i} \delta_{i j} \tag{2.8}
\end{equation*}
$$

In order to complete the proof, we have to check that brackets (2.8) are compatible with the canonical brackets (2.5). The compatibility of the brackets (2.5) and (2.8) implies the compatibility of the brackets (2.2), (2.3) and vice versa.

The (λ, μ)-variables (2.6) are so-called special Darboux-Nijenhuis coordinates [2, 6, 7] because

$$
P_{0}=\left(\begin{array}{cc}
0 & \mathrm{I} \\
-\mathrm{I} & 0
\end{array}\right), \quad P_{1}=\left(\begin{array}{cc}
0 & \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \\
-\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) & 0
\end{array}\right)
$$

and the corresponding recursion operator N takes the diagonal form

$$
\begin{equation*}
N=P_{1} P_{0}^{-1}=\sum_{i=1}^{n} \lambda_{i}\left(\frac{\partial}{\partial \lambda_{i}} \otimes \mathrm{~d} \lambda_{i}+\frac{\partial}{\partial \mu_{i}} \otimes \mathrm{~d} \mu_{i}\right) \tag{2.9}
\end{equation*}
$$

These Poisson tensors P_{0} and P_{1} satisfy equations (2.1) and the Nijenhuis torsion of N vanishes as a consequence of the compatibility between P_{0} and P_{1}.

Proposition 2. Brackets (2.5) and (2.8) between ($\lambda, \mu)$-variables belong to a whole family of compatible Poisson brackets $\{.,\}_{k}$ associated with the Poisson tensors:
$P_{k}=N^{k} P_{0}=\left(\begin{array}{cc}0 & \operatorname{diag}\left(\lambda_{1}^{k}, \ldots, \lambda_{n}^{k}\right) \\ -\operatorname{diag}\left(\lambda_{1}^{k}, \ldots, \lambda_{n}^{k}\right) & 0\end{array}\right), \quad k=0, \ldots, n$.
In the matrix form, these brackets are equal to

$$
\begin{align*}
\{\stackrel{1}{T}(\lambda), \stackrel{2}{T}(\mu)\}_{k} & =r_{12}^{[k]}(\lambda, \mu) \stackrel{1}{T}(\lambda) \stackrel{2}{T}(\mu)-\stackrel{1}{T}(\lambda) \stackrel{2}{T}(\mu) r_{21}^{[k]}(\lambda, \mu) \\
& +\stackrel{1}{T}(\lambda) s_{12}^{[k]}(\lambda, \mu) \stackrel{2}{T}(\mu)-\stackrel{2}{T}(\mu) s_{21}^{[k]}(\lambda, \mu) \stackrel{1}{T}(\lambda) \tag{2.10}
\end{align*}
$$

Here
$r_{12}^{[k]}(\lambda, \mu)=\frac{\eta}{\lambda-\mu}\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1-\frac{\lambda^{k}+\mu^{k}}{2} & \mu^{k} & 0 \\ 0 & \lambda^{k} & 1-\frac{\lambda^{k}+\mu^{k}}{2} & 0 \\ 0 & \rho_{C}^{[k]} & -\rho_{C}^{[k]} & 1\end{array}\right)$,
$r_{21}^{[k]}(\lambda, \mu)=\frac{\eta}{\lambda-\mu}\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1-\frac{\lambda^{k}+\mu^{k}}{2} & \lambda^{k} & \rho_{B}^{[k]} \\ 0 & \mu^{k} & 1-\frac{\lambda^{k}+\mu^{k}}{2} & -\rho_{B}^{[k]} \\ 0 & 0 & 0 & 1\end{array}\right)$,
$s_{12}^{[k]}(\lambda, \mu)=\frac{\eta}{\lambda-\mu}\left(\begin{array}{cccc}0 & \rho_{B}^{[k]} & 0 & 0 \\ 0 & \frac{\lambda^{k}-\mu^{k}}{2} & 0 & 0 \\ \rho_{C}^{[k]} & \rho_{D}^{[k]} & \frac{\lambda^{k}-\mu^{k}}{2} & 0 \\ 0 & 0 & 0 & 0\end{array}\right), \quad \quad s_{21}^{[k]}(\lambda, \mu)=\Pi s_{12}^{[k]}(\lambda, \mu) \Pi$.
and

$$
\rho_{X}^{[k]}=\frac{\lambda^{k} X(\lambda)}{A(\lambda)}-\frac{\mu^{k} X(\mu)}{A(\mu)}, \quad \text { where } \quad X=B, C, D
$$

is a difference of two polynomials, which are quotients of polynomials in variables λ and μ over a field.
Proof. At $k=0$ one has $\rho_{B}^{[0]}=0, \rho_{C}^{[0]}=0$ and $\rho_{D}^{[0]}=0$, so the bracket (2.10) coincides with the Sklyanin bracket (1.1). At $k=1$ we have

$$
\rho_{B}^{[1]}=\frac{\beta(\lambda-\mu)}{\alpha}, \quad \rho_{C}^{[1]}=\frac{\gamma(\lambda-\mu)}{\alpha}, \quad \rho_{D}^{[1]}=\frac{\delta(\lambda-\mu)}{\alpha}
$$

and bracket (2.10) coincides with the bracket (2.3).
At $k>1$ one can easily check that k th brackets (2.10) between polynomials $A(\lambda), B(\lambda), C(\lambda)$ and $D(\lambda)(2.7)$ imply the brackets

$$
\begin{equation*}
\left\{\lambda_{i}, \lambda_{j}\right\}_{k}=\left\{\mu_{i}, \mu_{j}\right\}_{k}=0, \quad\left\{\lambda_{i}, \mu_{j}\right\}_{k}=\lambda_{i}^{k} \delta_{i j} \tag{2.12}
\end{equation*}
$$

and vice versa. This completes the proof.
To proceed further, we need to recall that the normalized traces of the powers of N

$$
\begin{equation*}
J_{m}=\frac{1}{2 m} \operatorname{trace} N^{m}=\sum_{i=1}^{n} \lambda_{i}^{m}, \quad m=1, \ldots, n \tag{2.13}
\end{equation*}
$$

are integrals of motion satisfying Lenard-Magri recurrent relations [6, 7]:

$$
\begin{equation*}
P_{0} d J_{1}=0, \quad X_{J_{i}}=P_{0} d J_{i}=P_{1} d J_{i-1}, \quad P_{1} d J_{n}=0 \tag{2.14}
\end{equation*}
$$

By definition (2.7) polynomial

$$
A(\lambda)=\alpha \lambda^{n}+A_{1} \lambda^{n-1}+\cdots+A_{n}=\alpha \prod_{i=1}^{n}\left(\lambda-\lambda_{i}\right)
$$

is directly proportional to the minimal characteristic polynomial of $N(2.9)$

$$
\Delta_{N}(\lambda)=(\operatorname{det}(N-\lambda \mathrm{I}))^{1 / 2}=\prod_{i=1}^{n}\left(\lambda-\lambda_{i}\right)
$$

The Hamiltonians $H_{i}^{o}(1.5)$ are related to integrals of motion J_{m} (2.13) by the triangular Newton formulae
$\alpha J_{1}=H_{1}^{o}, \quad \alpha J_{2}=H_{2}^{o}+\frac{\left(H_{1}^{o}\right)^{2}}{2}, \quad \alpha J_{3}=H_{3}^{o}+H_{2}^{o} H_{1}^{o}+\frac{\left(H_{1}^{o}\right)^{3}}{3}, \ldots$.
As a consequence of the recursion relations (2.14), the Hamiltonians $H_{i}^{o}, i=1, \ldots, n$, satisfy the Frobenius recursion relations

$$
\begin{equation*}
N^{*} \mathrm{~d} H_{i}^{o}=\mathrm{d} H_{i+1}^{o}-\alpha^{-1} A_{i} \mathrm{~d} H_{1}^{o}, \tag{2.15}
\end{equation*}
$$

where $N^{*}=P_{0}^{-1} P_{1}$ and $H_{n+1}^{o}=0$. Such as $A_{i}=H_{i}^{o}$ a straightforward computation shows that they are equivalent

$$
N^{*} \mathrm{~d} A(\lambda)=\lambda \mathrm{d} A(\lambda)+A(\lambda) \mathrm{d} A_{1} .
$$

The special Darboux-Nijenhuis coordinates λ_{i}, μ_{i} are variables of separation of the action-angle type [2], i.e. the corresponding separated equations are trivial

$$
\left\{H_{i}^{o}, \lambda_{j}\right\}=\left\{J_{i}, \lambda_{j}\right\}=0, \quad i, j=1, \ldots, n .
$$

We can introduce another separated coordinates u_{i}, v_{i}, which are the so-called Sklyanin variables defined by

$$
B\left(u_{i}\right)=0, \quad v_{i}=-\eta^{-1} \ln A\left(u_{i}\right), \quad i=1, \ldots, n .
$$

The separation representation of the algebra in (u, v)-variables has the form

$$
\begin{aligned}
& B(\lambda)=\beta\left(\lambda-u_{1}\right)\left(\lambda-u_{2}\right) \cdots\left(\lambda-u_{n}\right), \\
& A(\lambda)=B(\lambda)\left(\frac{\alpha}{\beta}+\sum_{i=1}^{n} \frac{\mathrm{e}^{-\eta v_{i}}}{\left(\lambda-u_{i}\right) B^{\prime}\left(u_{i}\right)}\right), \\
& D(\lambda)=B(\lambda)\left(\frac{\delta}{\beta}+\sum_{i=1}^{n} \frac{d\left(u_{i}\right) \mathrm{e}^{\eta v_{i}}}{\left(\lambda-u_{i}\right) B^{\prime}\left(u_{i}\right)}\right), \\
& C(\lambda)=\frac{A(\lambda) D(\lambda)-d(\lambda)}{B(\lambda)} .
\end{aligned}
$$

Substituting matrix $T(\lambda)(1.3)$ with these entries into the brackets $\{., .\}_{k}(2.10)$ at $k=0,1$ one gets that u_{i}, v_{j} coordinates are Darboux variables with respect to the Sklyanin bracket

$$
\begin{equation*}
\left\{u_{i}, u_{j}\right\}_{0}=\left\{v_{i}, v_{j}\right\}_{0}=0, \quad\left\{u_{i}, v_{j}\right\}_{0}=\delta_{i j} \tag{2.16}
\end{equation*}
$$

whereas the second brackets look like

$$
\left\{u_{i}, u_{j}\right\}_{1}=0, \quad\left\{u_{i}, v_{j}\right\}_{1}=u_{i} \delta_{i j}-\frac{\beta A\left(u_{j}\right)}{\alpha B^{\prime}\left(u_{j}\right)}, \quad\left\{v_{i}, v_{j}\right\}=\frac{A^{\prime}\left(u_{i}\right)}{B^{\prime}\left(u_{i}\right)}-\frac{A^{\prime}\left(u_{j}\right)}{B^{\prime}\left(u_{j}\right)} .
$$

The corresponding separated equations,

$$
\begin{equation*}
\left\{A(\lambda), u_{j}\right\}_{k}=\lambda^{k} A\left(u_{j}\right) \prod_{i \neq j}^{n-1} \frac{\lambda-u_{i}}{u_{j}-u_{i}}, \quad j=1, \ldots, n, \tag{2.17}
\end{equation*}
$$

are linearized by the Abel transformation on the algebraic curve defined by $\mathrm{e}^{-\eta v_{i}}=A\left(u_{i}\right)$. The detailed discussion of these separated equations may be found in [3, 9, 12].

The special Darboux-Nijenhuis coordinates are dual to the Sklyanin variables. Namely, λ_{i}, μ_{i} are roots of polynomial $A(\lambda)$ and values of polynomial $B(\lambda)$ at $\lambda=\lambda_{i}$, while u_{i}, v_{i} are roots of polynomial $B(\lambda)$ and values of polynomial $A(\lambda)$ at $\lambda=u_{i}$.

2.2. Generic model

There are many other Poisson brackets compatible with the standard one (2.5). The main property of the proposed above bracket $\{.,\}_{1}(2.3)-(2.4)$ is that

$$
\{A(\lambda), A(\mu)\}_{0}=\{A(\lambda), A(\mu)\}_{1}=0
$$

It ensures that integrals of motion H_{i}^{o} for the open lattices are in bi-involution:

$$
\left\{H_{i}^{o}, H_{j}^{o}\right\}_{0}=\left\{H_{i}^{o}, H_{j}^{o}\right\}_{1}=0
$$

In this subsection, we are looking for bracket $\{., .\}_{1}^{\prime}$, which has to guarantee the similar property for generic integrals of motion H_{i} (1.6) from $\operatorname{tr} T(\lambda)$

$$
\left\{H_{i}, H_{j}\right\}_{0}=\left\{H_{i}, H_{j}\right\}_{1}^{\prime}=0, \quad i, j=1, \ldots, n
$$

Remind that $\{., .\}_{0}$ is the Sklyanin bracket (1.1), which already has the necessary property:

$$
\{\operatorname{tr} T(\lambda), \operatorname{tr} T(\mu)\}_{0}=0
$$

The following propositions can be ascertained by means of direct calculations.
Proposition 3. If $\alpha=\delta$ and $\beta=\gamma=0$ in $T(\lambda)$ (1.3), then

$$
\begin{equation*}
\{\operatorname{tr} T(\lambda), \operatorname{tr} T(\mu)\}_{1}=0 \tag{2.18}
\end{equation*}
$$

So, the desired bracket $\{., .\}_{1}^{\prime}$ may be obtained from the bracket $\{., .\}_{1}(2.3)-(2.4)$ by using special canonical transformations, which are generated by the suitable transformations of the matrix $T(\lambda)$.

Proposition 4. The Sklyanin bracket (1.1) is invariant with respect to transformation

$$
T(\lambda) \rightarrow V_{1} T(\lambda) V_{2}, \quad V_{i}=\left(\begin{array}{cc}
\alpha_{i} & \beta_{i} \tag{2.19}\\
\gamma_{i} & \delta_{i}
\end{array}\right), \quad \alpha_{i}, \beta_{i}, \gamma_{i}, \delta_{i} \in \mathbb{R}
$$

where $V_{1,2}$ are numerical matrices. If

$$
\beta_{1} \gamma_{2}+\delta_{1} \delta_{2}=0
$$

the bracket (2.3)-(2.4) after transformation (2.19) has the necessary property:

$$
\begin{equation*}
\{\operatorname{tr} T(\lambda), \operatorname{tr} T(\mu)\}_{1}^{\prime}=0 \tag{2.20}
\end{equation*}
$$

We present an explicit form of the bracket $\{., .\}_{1}^{\prime}$ in section 4 devoted to the periodic Toda lattice.

3. The Heisenberg magnet

Another important representation of the quadratic algebra with the generators A_{i}, B_{i}, C_{i} and D_{i} comes as a consequence of the co-multiplication property of the Sklyanin algebra (1.1). Essentially, it means that the matrix $T(\lambda)(1.3)$ can be factorized into a product of elementary matrices, each containing only one degree of freedom. In this picture, our main model turns out to be an n-site Heisenberg magnet, which is an integrable lattice of $n \mathrm{sl}(2)$ spins with nearest-neighbour interaction.

In the lattice representation the matrix $T(\lambda)(1.3)$ acquires the following form:

$$
\begin{equation*}
T(\lambda)=L_{1}\left(\lambda-c_{1}\right) L_{2}\left(\lambda-c_{2}\right) \cdots L_{n}\left(\lambda-c_{n}\right) \tag{3.1}
\end{equation*}
$$

with

$$
L_{m}(\lambda)=\left(\begin{array}{cc}
\lambda-s_{3}^{(m)} & s_{1}^{(m)}+\mathrm{i} s_{2}^{(m)} \tag{3.2}\\
s_{1}^{(m)}-\mathrm{i} s_{2}^{(m)} & \lambda+s_{3}^{(m)}
\end{array}\right), \quad \quad m=1, \ldots, n
$$

Here $s_{3}^{(m)}$ are dynamical variables, c_{m} are arbitrary numbers and $\mathrm{i}=\sqrt{-1}$.
Substituting matrix (3.1) into the Sklyanin bracket (1.1) and brackets (2.3)-(2.4) at $\eta=\mathrm{i}$ one gets canonical brackets on the direct sum of $\mathrm{sl}(2)$

$$
\begin{equation*}
\left\{s_{i}^{(m)}, s_{j}^{(m)}\right\}_{0}=\varepsilon_{i j k} s_{k}^{(m)} \tag{3.3}
\end{equation*}
$$

and second compatible brackets

$$
\left\{s_{i}^{(m)}, s_{j}^{(m)}\right\}_{1}=\varepsilon_{i j k} s_{k}^{(m)}\left(c_{m}-s_{3}^{(m)}\right), \quad\left\{s_{i}^{(m)}, s_{j}^{(\ell)}\right\}_{1}=\left(P_{1}^{(m \ell)}\right)_{i j}, \quad m \neq \ell
$$

where $\varepsilon_{i j k}$ is the totally skew-symmetric tensor and

$$
P_{1}^{(m \ell)}=\left(\begin{array}{ccc}
-\mathrm{i}\left(s_{3}^{(m)} s_{3}^{(\ell)}+s_{2}^{(m)} s_{2}^{(\ell)}\right) & \mathrm{i} s_{2}^{(m)} s_{1}^{(\ell)}-s_{3}^{(m)} s_{3}^{(\ell)} & \mathrm{i} s_{3}^{(m)}\left(s_{1}^{(\ell)}-\mathrm{i} s_{2}^{(\ell)}\right) \\
\mathrm{i} s_{1}^{(m)} s_{2}^{(\ell)}+s_{3}^{(m)} s_{3}^{(\ell)} & -\mathrm{i}\left(s_{3}^{(m)} s_{3}^{(\ell)}+s_{1}^{(m)} s_{1}^{(\ell)}\right) & -s_{3}^{(m)}\left(s_{1}^{(\ell)}-\mathrm{i} s_{2}^{(\ell)}\right) \\
-\mathrm{i}\left(s_{1}^{(m)}+\mathrm{i} s_{2}^{(m)}\right) s_{3}^{(\ell)} & \left(s_{1}^{(m)}+\mathrm{i} s_{2}^{(m)}\right) s_{3}^{(\ell)} & -\mathrm{i}\left(s_{1}^{(m)}+\mathrm{i} s_{2}^{(m)}\right)\left(s_{1}^{(\ell)}-\mathrm{i} s_{2}^{(\ell)}\right)
\end{array}\right) .
$$

The corresponding Poisson tensors P_{0} and P_{1} are degenerate and, therefore, the Hamiltonians H_{i}^{o} satisfy the Frobenius recurrence relations (2.15) in the following form:

$$
\begin{equation*}
P_{1} d H_{i}^{o}=P_{0}\left(d H_{i+1}^{o}-A_{i} d H_{1}^{o}\right), \quad i=1, \ldots, n \tag{3.4}
\end{equation*}
$$

where $H_{n+1}^{o}=0$ and $A_{i}=H_{i}^{o}$ are coefficients of the polynomial $A(\lambda)$. The first integrals of motion are

$$
\begin{aligned}
& H_{1}^{o}=\sum_{m=1}^{n}\left(c_{m}-s_{3}^{(m)}\right) \\
& H_{2}^{o}=\sum_{m>\ell}\left(s_{1}^{(m)}-\mathrm{i} s_{2}^{(m)}\right)\left(s_{1}^{(\ell)}+\mathrm{i} s_{2}^{(\ell)}\right)-\frac{1}{2} \sum_{m=1}^{n}\left(c_{m}-s_{3}^{(m)}\right)^{2}+\frac{\left(H_{1}^{o}\right)^{2}}{2} .
\end{aligned}
$$

Such as $\alpha=\delta$ and $\beta=\gamma=0$ we can use these brackets for the open and periodic lattices simultaneously. It means that Hamiltonians $H_{i}(1.6)$ from the $\operatorname{tr} T(\lambda)$ satisfy the Frobenius equations (3.4) too.

4. The Toda lattices

The Toda lattices appear as a specialization of our basic model when the parameters are fixed as follows:

$$
\begin{equation*}
\beta=\gamma=\delta=0 \quad \text { and } \quad \operatorname{det} T(\lambda)=1 \tag{4.1}
\end{equation*}
$$

We also put $\alpha=1$ and $\eta=-1$. In the lattice representation, the monodromy matrix T (1.3) acquires the form

$$
T(\lambda)=L_{1}(\lambda) \cdots L_{n-1}(\lambda) L_{n}(\lambda), \quad L_{i}=\left(\begin{array}{cc}
\lambda-p_{i} & -\mathrm{e}^{q_{i}} \tag{4.2}\\
\mathrm{e}^{-q_{i}} & 0
\end{array}\right)
$$

Here p_{i}, q_{i} are dynamical variables.

4.1. Open lattice

Substituting matrix $T(\lambda)$ (4.2) into the brackets $\{., .\}_{k}(2.10)$ at $k=0,1$ one gets that the Poisson tensors P_{0} and P_{1} in (p, q) variables take the form

$$
\begin{align*}
& P_{0}=\sum_{i=1}^{n} \frac{\partial}{\partial q_{i}} \wedge \frac{\partial}{\partial p_{i}} \\
& P_{1}=\sum_{i=1}^{n-1} \mathrm{e}^{q_{i}-q_{i+1}} \frac{\partial}{\partial p_{i+1}} \wedge \frac{\partial}{\partial p_{i}}+\sum_{i=1}^{n} p_{i} \frac{\partial}{\partial q_{i}} \wedge \frac{\partial}{\partial p_{i}}+\sum_{i<j}^{n} \frac{\partial}{\partial q_{j}} \wedge \frac{\partial}{\partial q_{i}} \tag{4.3}
\end{align*}
$$

Namely this bi-Hamiltonian structure of the open Toda lattice was obtained in [1].
For the open Toda lattice the Hamiltonians H_{i}^{o} from the $A(\lambda)=\lambda^{n}+H_{1}^{o} \lambda^{n-1}+\cdots+H_{n}^{o}$ satisfy the Frobenius relations (2.15). The first integrals of motion are equal to

$$
\begin{equation*}
H_{1}^{o}=-\sum_{i=1}^{n} p_{i}, \quad H_{2}^{o}=\frac{1}{2} \sum_{i=1}^{n} p_{i}^{2}+\sum_{i=1}^{n-1} \mathrm{e}^{q_{i}-q_{i+1}}-\frac{1}{2}\left(\sum_{i=1}^{n} p_{i}\right)^{2} \tag{4.4}
\end{equation*}
$$

The Sklyanin variables u_{i}, v_{i} are introduced as before:

$$
\begin{equation*}
B\left(u_{i}\right)=0, \quad v_{i}=-\eta^{-1} \ln A\left(u_{i}\right), \quad i=1, \ldots, n-1, \tag{4.5}
\end{equation*}
$$

the only difference now is that this gives only $n-1$ instead of n separation pairs. The missing pair of canonical variables is defined as follows:

$$
\begin{equation*}
v_{n}=\ln b_{1}=-q_{n}, \quad u_{n}=-a_{1}=\sum_{i=1}^{n} p_{i} \tag{4.6}
\end{equation*}
$$

The separation representation of the algebra in (u, v)-variables may be found in [9, 13]. It is easy to prove [13] that (u, v)-variables are Darboux variables

$$
\omega=P_{0}^{-1}=\sum_{i=1}^{n} \mathrm{~d} u_{i} \wedge \mathrm{~d} v_{i}
$$

and the only nonzero second Poisson brackets are

$$
\begin{array}{ll}
\left\{u_{j}, v_{i}\right\}_{1}=u_{i} \delta_{i j}, & \left\{u_{n}, u_{i}\right\}_{1}=-\mathrm{e}^{-v_{n}} \frac{A\left(u_{i}\right)}{B^{\prime}\left(u_{i}\right)}, \\
\left\{v_{n}, v_{i}\right\}_{1}=-1, & \left\{u_{n}, v_{n}\right\}_{1}=-\sum_{i=1}^{n} u_{i} .
\end{array}
$$

Remark 1. From the factorization (4.2) of the monodromy matrix $T(\lambda)$ one gets

$$
B_{n}(\lambda)=-\mathrm{e}^{q_{n}} A_{n-1}(\lambda) \Rightarrow B_{n}\left(u_{j}\right)=-\mathrm{e}^{q_{n}} A_{n-1}\left(\lambda_{j}\right)=0 .
$$

This implies that for the ($n-1$)-particle chain special Darboux-Nijenhuis variables λ_{j} coincide with the Sklyanin variables $u_{j}, i=1, \ldots, n-1$ for the n-particle chain.

4.2. Periodic lattice

For the Toda lattice $\alpha \neq \delta$ and, therefore, in order to get new bracket $\{., .\}_{1}^{\prime}$ with the necessary property (2.20) we have to apply transformation (2.19) to the initial bracket $\{., .\}_{1}(2.3)-(2.4)$. If we put

$$
V_{1}=\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right), \quad \text { and } \quad V_{2}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

then one gets the following brackets between the entries of $T(\lambda)$:

$$
\begin{align*}
& \{A(\lambda), A(\mu)\}_{1}^{\prime}=\eta(B(\lambda) C(\mu)-B(\mu) C(\lambda)), \quad\{D(\lambda), D(\mu)\}_{1}^{\prime}=0, \\
& \{A(\lambda), D(\mu)\}_{1}^{\prime}=\frac{\eta \lambda}{\lambda-\mu}(C(\lambda) B(\mu)-C(\mu) B(\lambda)) \\
& \{B(\lambda), B(\mu)\}_{1}^{\prime}=\eta(B(\lambda) D(\mu)-B(\mu) D(\lambda)), \\
& \{C(\lambda), C(\mu)\}_{1}^{\prime}=\eta(C(\lambda) D(\mu)-C(\mu) D(\lambda)), \tag{4.7}\\
& \{D(\lambda), B(\mu)\}_{1}^{\prime}=\frac{\eta \mu}{\lambda-\mu}(B(\lambda) D(\mu)-B(\mu) D(\lambda)) \\
& \{D(\lambda), C(\mu)\}_{1}^{\prime}=\frac{-\eta \mu}{\lambda-\mu}(C(\lambda) D(\mu)-C(\mu) D(\lambda))
\end{align*}
$$

and
$\{A(\lambda), B(\mu)\}_{1}^{\prime}=\frac{-\eta(\lambda A(\mu) B(\lambda)-\mu A(\lambda) B(\mu))}{\lambda-\mu}+\eta(B(\lambda) D(\mu)+(B(\lambda)-C(\lambda)) B(\mu))$,
$\{A(\lambda), C(\mu)\}_{1}^{\prime}=\frac{\eta(\lambda A(\mu) C(\lambda)-\mu A(\lambda) C(\mu)}{\lambda-\mu}-\eta(C(\lambda) D(\mu)+(B(\lambda)-C(\lambda)) C(\mu))$,
$\{B(\lambda), C(\mu)\}_{1}^{\prime}=\frac{\eta(\lambda A(\mu) D(\lambda)-\mu A(\lambda) D(\mu))}{\lambda-\mu}-\eta(B(\lambda) D(\mu)-D(\lambda) C(\mu)+D(\lambda) D(\mu))$.

According to proposition 4 these brackets have the necessary property (2.20).
Substituting matrix $T(\lambda)$ (4.2) into the brackets (4.7)-(4.8) one gets that the Poisson tensor P_{1}^{\prime} in (p, q) variables takes the form

$$
\begin{aligned}
& P_{1}^{\prime}=\sum_{i=1}^{n-1} \mathrm{e}^{q_{i}-q_{i+1}} \frac{\partial}{\partial p_{i+1}} \wedge \frac{\partial}{\partial p_{i}}+\sum_{i=1}^{n} p_{i} \frac{\partial}{\partial q_{i}} \wedge \frac{\partial}{\partial p_{i}}+\sum_{i<j}^{n} \frac{\partial}{\partial q_{j}} \wedge \frac{\partial}{\partial q_{i}} \\
&-\sum_{i=1}^{n}\left(\mathrm{e}^{q_{1}} \frac{\partial}{\partial q_{i}} \wedge \frac{\partial}{\partial p_{1}}+\mathrm{e}^{q_{n}} \frac{\partial}{\partial q_{i}} \wedge \frac{\partial}{\partial p_{n}}\right) .
\end{aligned}
$$

For the periodic Toda lattice the Hamiltonians H_{1} and H_{2} from the $\operatorname{tr} T(\lambda)=\lambda^{n}+H_{1} \lambda^{n-1}+$ $\cdots+H_{0}$ are equal to
$H_{1}=H_{1}^{o}=-\sum_{i=1}^{n} p_{i}, \quad H_{2}=H_{2}^{o}+\mathrm{e}^{q_{n}-q_{1}}=\frac{1}{2} \sum_{i=1}^{n} p_{i}^{2}+\sum_{i=1}^{n} \mathrm{e}^{q_{i}-q_{i+1}}-\frac{1}{2}\left(\sum_{i=1}^{n} p_{i}\right)^{2}$,
where $q_{n+i}=q_{i}$. These Hamiltonians $H_{i}, i=1, \ldots, n$, form the Frobenius chain

$$
\begin{equation*}
N^{*} \mathrm{~d} H_{i}=\mathrm{d} H_{i+1}+c_{i} \mathrm{~d} H_{1}, \quad \text { with } \quad H_{n+1}=0 \tag{4.10}
\end{equation*}
$$

Here $N^{*}=P_{0}^{-1} P_{1}^{\prime}$ and c_{i} are coefficients of the minimal characteristic polynomial of the recursion operator

$$
\begin{equation*}
\Delta_{N}(\lambda)=(\operatorname{det}(N-\lambda \mathrm{I}))^{1 / 2}=\lambda^{n}-\left(c_{1} \lambda^{n-1}+\cdots+c_{n}\right) \tag{4.11}
\end{equation*}
$$

which can be defined directly via the entries of the matrix $T(\lambda)$

$$
\begin{equation*}
\Delta_{N}(\lambda)=A(\lambda)+B(\lambda)-C(\lambda)-D(\lambda) . \tag{4.12}
\end{equation*}
$$

Remark 2. Transformations (2.19) of the matrix $T(\lambda)$ give rise to canonical transformations in the phase space. As sequence tensor P_{1}^{\prime} (4.9) coincides with tensor P_{1} (4.3) after the following canonical transformation

$$
p_{1} \rightarrow p_{1}+\mathrm{e}^{-q_{1}}, \quad \quad p_{n} \rightarrow p_{n}+\mathrm{e}^{q_{n}}
$$

which identifies coefficients c_{i} with integrals of motion for the open Toda lattice $c_{i}=-H_{i}^{o}$.

5. Integrable DST model

The integrable case of the DST (discrete self-trapping) model with n degrees of freedom was studied in [5]. It appears as a specialization of our basic model when several parameters vanish:

$$
\begin{equation*}
\beta=\gamma=\delta=0 \quad \text { and } \quad Q_{j}=0, \quad j=1, \ldots, n-1 \tag{5.1}
\end{equation*}
$$

We also put $\alpha=1$ and $\eta=-1$. In the lattice representation, the matrix $T(\lambda)$ (1.3) acquires the form
$T(\lambda)=L_{1}\left(\lambda-c_{1}\right) L_{2}\left(\lambda-c_{2}\right) \cdots L_{n}\left(\lambda-c_{n}\right), \quad$ with $\quad L_{i}(\lambda)=\left(\begin{array}{cc}\lambda-q_{i} p_{i} & b q_{i} \\ -p_{i} & b\end{array}\right)$.

Here p_{i}, q_{i} are dynamical variables, whereas b and c_{i} are numbers entering into the Casimir function (1.4)

$$
d(\lambda)=\operatorname{det} T(\lambda)=b^{n}\left(\lambda-c_{1}\right)\left(\lambda-c_{2}\right) \cdots\left(\lambda-c_{n}\right)
$$

Substituting matrix $T(\lambda)$ (5.2) into the Sklyanin bracket (1.1) and into the brackets (4.7)-(4.8) one gets canonical brackets

$$
\left\{p_{i}, q_{j}\right\}_{0}=\delta_{i j}, \quad\left\{q_{i}, q_{j}\right\}_{0}=\left\{p_{i}, p_{j}\right\}_{0}=0, \quad i, j=1, \ldots, n
$$

and quadratic brackets

$$
\begin{array}{ll}
\left\{q_{i}, q_{j}\right\}_{1}=-Q_{i} Q_{j}, & \left\{q_{i}, p_{j}\right\}_{1}=Q_{i} P_{j}-c_{i} \delta_{i j}, \\
\left\{p_{i}, p_{j}\right\}_{1}=-P_{i} P_{j}, & \left\{p_{i}, q_{j}\right\}_{1}=q_{i} p_{j}-b \delta_{i+1 j}
\end{array}
$$

where $Q_{1}=q_{1}+1, P_{n}=p_{n}+b$ and $Q_{i}=q_{i}, P_{i}=p_{i}$ for other values of index i.
As above the Hamiltonians $H_{i}, i=1, \ldots, n$, from the $\operatorname{tr} T(\lambda)=\lambda^{n}+H_{1} \lambda^{n-1}+\cdots+H_{n}$ satisfy the Frobenius relations (4.10). The two first Hamiltonians of the system are

$$
\begin{align*}
& H_{1}=-\sum_{i=1}^{n}\left(q_{i} p_{i}-c_{i}\right) \\
& H_{2}=\sum_{i>j}\left(q_{i} p_{i}-c_{i}\right)\left(q_{j} p_{j}-c_{j}\right)-b \sum_{i=1}^{n} q_{i} p_{i+1}, \quad p_{n+1} \equiv p_{1} \tag{5.3}
\end{align*}
$$

The Sklyanin variables $\left(u_{i}, v_{i}\right), i=1, \ldots, n$, are introduced by the same formulae as for the Toda lattice, cf (4.5) and (4.6).

6. The Goryachev-Chaplygin gyrostat

Let us consider the matrix $T(\lambda)$ introduced in [4]

$$
T(\lambda)=\left(\begin{array}{cc}
\lambda^{2}-2 \lambda J_{3}-J_{1}^{2}-J_{2}^{2} & \left(x_{1}+\mathrm{i} x_{2}\right) \lambda-x_{3}\left(J_{1}+\mathrm{i} J_{2}\right) \tag{6.1}\\
\left(x_{1}-\mathrm{i} x_{2}\right) \lambda-x_{3}\left(J_{1}-\mathrm{i} J_{2}\right) & -x_{3}^{2}
\end{array}\right)
$$

Substituting matrix (6.1) into the Sklyanin bracket (1.1) and brackets (2.3)-(2.4) at $\eta=2 \mathrm{i}$ one gets canonical Poisson tensor on the dual space of Euclidean algebra $e(3)$

$$
P_{0}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & x_{3} & -x_{2} \tag{6.2}\\
* & 0 & 0 & -x_{3} & 0 & x_{1} \\
* & * & 0 & x_{2} & -x_{1} & 0 \\
* & * & * & 0 & J_{3} & -J_{2} \\
* & * & * & * & 0 & J_{1} \\
* & * & * & * & * & 0
\end{array}\right)
$$

and the following quadratic tensor

$$
P_{1}=\left(\begin{array}{cccccc}
0 & -x_{3}^{2} & x_{3} x_{2} & -x_{2} J_{1} & -x_{2} J_{2} & x_{3} J_{2}-2 x_{2} J_{3} \tag{6.3}\\
* & 0 & -x_{3} x_{1} & x_{1} J_{1} & x_{1} J_{2} & 2 x_{1} J_{3}-x_{3} J_{1} \\
* & * & 0 & 0 & 0 & -x_{1} J_{2}+x_{2} J_{1} \\
* & * & * & 0 & -J_{1}^{2}-J_{2}^{2} & -J_{3} J_{2} \\
* & * & * & * & 0 & J_{1} J_{3} \\
* & * & * & * & * & 0
\end{array}\right) .
$$

These tensors satisfy equations (2.1) at any values of the Casimir functions

$$
\mathcal{C}_{1}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}, \quad \mathcal{C}_{2}=x_{1} J_{1}+x_{2} J_{2}+x_{3} J_{3}
$$

However, in the proposed method coefficients of det $T=-\mathcal{C}_{1} \lambda^{2}+x_{3} \mathcal{C}_{2} \lambda$ have to be the Casimir functions and, therefore, we have to put $\mathcal{C}_{2}=0$. As sequence, we have $\{A(\lambda), A(\mu)\}_{1}=0$ at $\mathcal{C}_{2}=0$ only.

Remark 3. Solving equations $P_{0} d H_{2}^{o}=\left(P_{1}+\alpha P_{0}\right) H_{1}^{o}$ at arbitrary values of $\mathcal{C}_{1,2}$ one gets

$$
H_{1}^{o}=J_{3}, \quad H_{2}^{o}=J_{1}^{2}+J_{2}^{2}+2 J_{3}^{2}+\alpha J_{3} .
$$

Here H_{2}^{o} is a kinetic part of the Hamiltonian for the Kowalevski gyrostat, which may be studied by using 2×2 Lax matrix $L(\lambda)=K_{+} T(\lambda) K_{-} T^{-1}(-\lambda)$ [4]. The tensor P_{1} (6.3) differs from the Poisson tensor for the Kowalevski gyrostat, which appears from the linear r-matrix algebra [14].

The 2×2 Lax matrix for the Goryachev-Chaplygin gyrostat looks like [8]

$$
\widetilde{T}(\lambda)=\left(\begin{array}{cc}
\mathrm{e}^{\frac{q}{2}} & 0 \tag{6.4}\\
0 & \mathrm{e}^{-\frac{q}{2}}
\end{array}\right)\left(\begin{array}{cc}
\lambda+2 J_{3}+p & a \\
a & 0
\end{array}\right) T(\lambda)\left(\begin{array}{cc}
\mathrm{e}^{-\frac{q}{2}} & 0 \\
0 & \mathrm{e}^{\frac{q}{2}}
\end{array}\right) .
$$

Here p, q are additional dynamical variables, a is an arbitrary number and $T(\lambda)$ is given by (6.1).

Substituting this matrix into the Sklyanin bracket (1.1) and into the brackets (4.7)-(4.8) one gets the compatible Poisson tensors on the extended phase space $e^{*}(3) \ltimes(p, q)$

$$
\widetilde{P}_{0} \equiv\left(\begin{array}{cc}
P_{0} & W_{0} \tag{6.5}\\
W_{0}^{T} & G_{0}
\end{array}\right)=\left(\begin{array}{c|c}
P_{0} & 0 \\
& \begin{array}{c}
0 \\
*
\end{array} \begin{array}{cc}
2 \mathrm{i} \\
0
\end{array}
\end{array}\right)
$$

and

$$
\widetilde{P}_{1} \equiv\left(\begin{array}{cc}
P_{1} & W_{1} \tag{6.6}\\
W_{1}^{T} & G_{1}
\end{array}\right)=\left(\begin{array}{rrr}
P_{1} & -2 x_{2} \\
2 x_{3} J_{2}+2 p x_{2}+8 x_{2} J_{3} & 2 x_{1} \\
2 x_{3}-2 p x_{1}-8 x_{1} J_{3} & 0 \\
2 x_{1} J_{2}-2 x_{2} J_{1} & 2 J_{2}\left(p+3 J_{3}\right) & -2 J_{2}+\mathrm{i} x_{3} \mathrm{e}^{q} \\
2 a x_{3}-2 p J_{1}-6 J_{1} J_{2} & 2 J_{1}-x_{3} \mathrm{e}^{q} \\
2 a x_{2} & -\mathrm{i}\left(x_{1}+\mathrm{i} x_{2}\right) \mathrm{e}^{q} \\
\left.-2 a x_{3}-p-a \mathrm{e}^{q}\right) \\
0
\end{array}\right),
$$

which satisfy equations (2.1) at $\mathcal{C}_{2}=\underset{\sim}{0}$ only. Here P_{0} and P_{1} are given by (6.2) and (6.3).
The Hamiltonians H_{i} from the $\operatorname{tr} \widetilde{T}(\lambda)=\lambda^{3}+H_{1} \lambda+\lambda^{2} H_{2}+H_{3}$ are

$$
\begin{aligned}
& H_{1}=p \\
& H_{2}=-\left(J_{1}^{2}+J_{2}^{2}+4 J_{3}^{2}+2 p J_{3}-2 a x_{1}\right) \\
& H_{3}=-\left(2 J_{3}+p\right)\left(J_{1}^{2}+J_{2}^{2}\right)-2 a x_{3} J_{1}
\end{aligned}
$$

The obtained tensors \widetilde{P}_{0} and \widetilde{P}_{1} are degenerate and, therefore, the Hamiltonians H_{i} reproduce the Frobenius chain in the following form

$$
\begin{equation*}
\widetilde{P}_{1} \mathrm{~d} H_{i}=\widetilde{P}_{0}\left(\mathrm{~d} H_{i+1}+c_{i} \mathrm{~d} H_{1}\right), \quad i=1,2,3 \tag{6.7}
\end{equation*}
$$

where $H_{4}=0$ and c_{i} are coefficients of the polynomial $\Delta_{N}(\lambda)=A(\lambda)+B(\lambda)-C(\lambda)-D(\lambda)$ (4.11)-(4.12).

At $p=\rho$ and $q=0$ matrices $G_{0}(6.5)$ and $G_{1}(6.6)$ are (generically) non-degenerate. So, the Dirac procedure can reduce Poisson tensors $\widetilde{P}_{0,1}$ to a new Poisson tensors $\widetilde{P}_{0,1}^{D}$ on $e^{*}(3)$ defined by

$$
\widetilde{P}_{k}^{D}=P_{k}+\left(W_{k} G_{k}^{-1} W_{k}^{T}\right)_{p=\rho, q=0}, \quad k=0,1
$$

Here $P_{0}=\widetilde{P}_{0}^{D}$ is canonical Poisson tensor (6.2) and P_{1} is given by (6.3). This reduction procedure preserves equations (6.7) for the reduced integrals of motion. The main problem is that the Dirac procedure destroys the compatibility of the Poisson tensors $\widetilde{P}_{0,1}^{D}$.

7. Conclusion

We present a family of compatible Poisson brackets (2.10) that includes the Sklyanin bracket, and prove that the Sklyanin variables are dual to the special Darboux-Nijenhuis coordinates associated with these brackets. The application of the r-matrix formalism is extremely useful here resulting in drastic reduction of the calculations for a whole set of integrable systems.

The construction can be generalized to other r-matrix algebras. Remind, if one substitutes $T(\lambda)=1+\varepsilon L(\lambda)+O\left(\varepsilon^{2}\right), r=\varepsilon r$ into (1.1) and let $\varepsilon \rightarrow 0$ one gets a linear bracket. Then if $T(\lambda)$ satisfy the Sklyanin bracket (1.1), then the matrix $\mathcal{T}(\lambda)=T(\lambda) K_{-} T^{-1}(-\lambda)$ obeys the reflection equation algebra [10]. The corresponding compatible brackets for the open generalized Toda lattices were considered in [15].

Moreover, the whole construction can immediately be transferred to the quantum case because r-matrices in (2.10) became dynamical matrices at $k>1$ only.

Acknowledgments

We would like to thank I V Komarov and V I Inozemtsev for useful and interesting discussions. The research was partially supported by the RFBR grant 06-01-00140.

References

[1] Das A and Okubo S 1989 A systematic study of the Toda lattice Ann. Phys. 30 215-32
[2] Falqui G and Pedroni M 2003 Separation of variables for bi-Hamiltonian systems Math. Phys. Anal. Geom. 6 139-79
[3] Flaschka H and McLaughlin D W 1976 Canonically conjugate variables for the Korteweg-de Vries equation and the Toda lattice with periodic boundary conditions Progr. Theor. Phys. 55 438-56
[4] Kuznetsov V B and Tsiganov A V 1989 A special case of Neumann's system and the Kowalewski-ChaplyginGoryachev top J. Phys. A: Math. Gen. 22 L73
[5] Kuznetsov V B, Salerno M and Sklyanin E K 2000 Quantum Bäcklund transformation for the integrable DST model J. Phys.: Condens. Matter A 33 171-89
[6] Magri F 1978 A simple model of the integrable Hamiltonian equation J. Math. Phys. 19 1156-62
[7] Magri F 1997 Eight Lectures on Integrable Systems (Lecture Notes in Physics vol 495) (Berlin: Springer) pp 256-96
[8] Sklyanin E K 1984 The Goryachev-Chaplygin top and the method of the inverse scattering problem Differential Geometry, Lie Groups and Mechanics: VI. Zap. Nauchn. Sem. LOMI vol 133 p 236
[9] Sklyanin E K 1985 The quantum Toda chain Lecture Notes Phys. 226 pp 196-293
[10] Sklyanin E K 1988 Boundary conditions for integrable quantum systems J. Phys. A: Math. Gen. 212375
[11] Sklyanin E K 1992 Quantum inverse scattering method: selected topics Quantum Group and Quantum Integrable Systems (Nankai Lectures in Mathematical Physics) ed Mo-Lin Ge (Singapore: World Scientific) pp 3-97
[12] Smirnov F A 1998 Structure of matrix elements in quantum Toda chain J. Phys. A: Math. Gen. 31 8953-71
[13] Tsiganov A V and Grigoryev Yu A 2006 On the Darboux-Nijenhuis variables for the open Toda lattice Vadim Kuznetsov Memorial Issue SIGMA 2 paper 097 (Preprint nlin.SI/0701004)
[14] Tsiganov A V 2007 Compatible Lie-Poisson brackets on Lie algebras $e(3)$ and so(4) Theor. Math. Phys. 151 26-43
[15] Tsiganov A V 2007 On the Darboux-Nijenhuis coordinates for the generalized open Toda lattices Theor. Math. Phys. at press

